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Chaos and order in crossed fields
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Atoms with a single highly excited electrofso-called Rydberg atomswhen placed in external fields,
become atomic-scale laboratories in which the quantum mechanics of strongly nonlinear systems can be tested.
Especially the extensive symmetry breaking introduced to the Coulomb potential by crossed electric and
magnetic fields leads to rich nonlinear dynamics and is also a source of great complexity. In this paper, we
analyze the nonlinear dynamics aspects of this atomic system, such as periodic orbits, bifurcations, order-chaos
transitions, and islands of stability. In particular, we present an approximate Hamiltonian that turns out to be
very effective in bringing out the classical structures that support the complexity of the motion. We conclude
with a coherent state analysis that allows a direct comparison of quantum and classical results.
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PACS numbeg(s): 05.45:+b, 03.20+i, 03.65.Sq

I. INTRODUCTION solution to the crossed-fields problem as early as 1926,
which emphasized how the solution progresses from a non-
The hydrogen atom in perpendiculécrossedl electric  degenerate two-degree-of-freedom problem to a doubly de-
and magnetic fields is a classic problem of the early quanturgenerate one with two identical frequencies as the angle be-
theory[1]. However, in the intervening years, highly excited tween the fields approaches 90t]. However, when the
hydrogenic atomgso-called Rydberg systenig]) in exter-  fields are strong, this solution is unable to describe the com-
nal fields have emerged as atomic-scale laboratories whegdex dynamics.
the quantum mechanics of classical chaotic systems can be Recently, Gourlayet al.[10] have derived a Hamiltonian
tested[3]. In particular, Rydberg systems in crossed fieldsthat describes the classical motion in the crossed-fields prob-
have become testing grounds for the quantum-mechanicém correct to second order in the fields. The purpose of this
signatures of three-dimensional chaotic motjdrb]. paper is to analyze the nonlinear dynamics aspects of this
The symmetry breaking of the Coulomb potenfig] in-  atomic problem using this approximate Hamiltonian, which
duced by external fields affects the three quantum numbeitsirns out to be very effective in bringing out the classical
n, I, andm, of the Rydberg electron differently: as long as a structures that support the complexity of the motion. In par-
single field direction is presenty remains a good quantum ticular, we will show that the most prominent periodic orbit,
number,| breaks down extensively, whereagreaks down oOne that dominates the experimental results for a wide range
only gradually with increasing magnetic fidld]. Therefore, of parameter$4,5], emerges naturally as the most stable or-
an n manifold of electronic energy levels does not havebit in our analysis.
enough degrees of freedom for chaos, which only develops This paper is organized as follows. In Sec. Il, we intro-
when differentn shells mix[7] (“intermanifold chaos’. In  duce the approximate Hamiltonian, and we describe its sym-
contrast, the extensive symmetry breaking introduced by twénetries and scaling properties. We apply perturbation theory
misaligned(in practice, crossedfields causes “intramani- 1O reduce the dimensionality of this problem. In Sec. Ill, we
fold chaos.” This chaos within an manifold is a desirable Present the structure of phase space generated from the ap-
scenario from an experimental point of view because, irProximate Hamiltonian. Special attention is given to a stabil-
principle, it can be tuned by varying the system parameterdty analysis(Sec. V), revealing interesting chaos-order alter-
Of course, the full dynamics has three degrees of freedorfiations that indicate the existence of approximate constants
and this feature causes much of the immense complexity g¥f motion. These results are compared with the exact motion.
the dynamics. It is not easy to obtain an overview of theSection V compares quantum mechanical properties of the
motion of a system with three degrees of freedom sinc@pproximate Hamiltonian with our classical findings. The
phase space has six dimensions, and Poinsartaces of Work is summarized in Sec. VI.
section are no longer useful. The high dimensionality of the
crossed-fields problem opens the floodgates for a wealth of Il. PERTURBATION THEORY

new physics, which is only possible beyond two degrees of - \egiecting relativistic effects, the motion of an electron in

freedom: for instance, Amnol'd diffusion can take place in o hendicular electric and magnetic fields is described by the
this experimentally accessible syst¢f]. Less esoterically, erturbed Coulomb Hamiltoniaii 1]
it also becomes possible to form electronic wave packetg

localized in all spatial dimensions, and the observation of 1, B B? 5 o
these wave packets, which was accomplished recégily H=5p "+ Sl 5 (X*+y9)— - +Fx. (€N
opens an exciting window on the dynamics of the electron.

Using the “old quantum theory” and advanced methodsWe use atomic units throughout, i.e., the magnetic fizlid
of celestial mechanics, Pauli provided an elegant first-ordegiven in units ofB,= (e/4)3m2c=2.35< 10° T and points in
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the z direction whereas the electric fiel is in units of
Fo=e’mZ/#*=5.14< 10'* V/m and points in thex direction.

In the remaining part of this paper we will refer to the dy-
namics induced by Hamiltoniafl) as exactas opposed to
the approximatetreatment outlined below.

In this section we will only sketch the derivation of the
approximate Hamiltonian and refer the reader interested i
the details to Ref.10]. The regularization of Hamiltoniafi)
in the four Kustaanheimo-Stiefel coordinatasand their
conjugate momentR,, leads to the pseudo-Hamiltonian

4122225222222
H=Z=§(Pu+u )+?BLZu +2?u (uf+ug)(usz+uz)
8F ,
+—3—w u“(UqUz+Usly), 2
where

J-8E

andL, is thez component of the electronic angular momen-
tumL=rXnp.

A useful view on the dynamics of Hamiltoniaf®) is
given by the following set of canonical variables:

w

1
L=5(p+1a), é,=dut da.
1
A=5 b= la), ¢éa,=db~ ¢a,
1
n:§(|a+|c)a bn=dat b,
1
ALZZE(Ia_Ic)7 (bALZ: ba— dc, (©))
where the action variablek,, ... |4 and their conjugate

angles¢,, . .. ,$q have been introduced if10]. The con-
served quantit;ALZ and its conjugate angI¢AL are due to

the introduction of a fourth degree of freedom by the

Kustaanheimo-Stiefel transformation, and the physical mo-

tion may be recovered by requirimgLZ=0. The quantityn
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it contains a pair of degenerate, strongly coupled asymmetric
tops in these two generators:

s 1 B 3Fn
BT =gt 50+ K) === (=K

2

212

n

T [3n2—4(JI5+KZ—J,K) —8(J,Ky+I,K,)]
F2n4

ST [— 1702+ 12(324+ K2+ J,K,) ]
FBn®

2 (Jsz_‘]sz)- (6)

In the following, we will refer to this Hamiltonian asor-
malized Here, A is the Runge-Lenz-Laplace vector, which

indicates the semimajor axis of the elliptic orbit in the
Kepler-Coulomb problemA is given by[13]

1 r
A= XL—-—], 7
\/—2H0(p r) @
where
p> 1
Ho=% —+ ®

is the energy of the field-free motion.

The vectors] andK have the norrm/2, which is a con-
served quantity in our treatment, making Hamiltonig@)
effectively two dimensional. The third degree of freedom is
represented by and its canonically conjugate angfs, .

The vectors] andK obey the angular momentum Poisson
bracket relations, and the equations of motion may be found
from

%J=[J,H]=VJH><J, 9)
and correspondingly ford/dt)K, with H=E®?)(J,K). By
[,] we denote the Poisson bracket, avigldenotes the dif-
ferentiation with respect taJ(,Jy,J,).

We will rely on the normalized Hamiltoniaf6) to ana-
lyze the motion in this system.
However, it is possible to perform a further approxima-
tion to smooth out the cha§$4]. A pair of rotations, one for

is the classical analog to the principal quantum numbery,

given also by the harmonic oscillator part of Hamiltonian
(2):
2n=3(P?+u?).

(4)

A. Reduced dimensionality Hamiltonians

When the normal form resulting from the classical pertur-
bative treatment is expressed in terms of the two angular

momental andK, the Lie-algebraic generators of the group
SU(2)® SU(2), isomorphic to the symmetry group $0 of
the Coulomb probleni12],

J=(L+A)/2, K=(L—A)/2, (5)

Iy . 1 0 a\/J,
3, | =— 1 0|l3], @O0
2
3 Vi+a a0 1 ,
z
where
3nF
a=—g~ (13)

and a corresponding one KK with the transpose of the
matrix in Eq.(10) is needed to simplify the linear terms in
Hamiltonian(6) to
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wherel =J+ R, A=J—K.
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proximate treatment, the quantityis conserved and may be
regarded as an additional external paramgtes is the price
that one has to pay in reducing this system from 3 to 2
degrees of freedomlt is more convenient to use the scaling

Averaging over the linear motion, which is harmonic with ©f the system with respect to instead of the usual scaling

the frequencyw, = 3\BZ+(3nF)?, results in an integrable
approximation 14

n2

12802 [81n%+ 52(3{" Rz)z
L

Eaq(3.K)=ED+C+

+ 53(32_ Rz)z_ 54(3xRx+3yRy)]v (13)
where
_3B*n* 17F°n*
T 16 16

(14)

8,=—12B%F?n?,

85,=—2B*+ 24B%F2n2+54F*n*,
83=—6B*+162F*n?,

5,=16B*+144B%F?n?. (15

with the magnetic field3].
Calculations done with a fixenl may be transferred to the
dynamics forn# 1 by scaling

B/n®, F/n% (19
tnd, E/n?, (20)
Jn, Kn, (22)
rn?, pin. (22

Quantum mechanically, constant means that we remain
within onen manifold. In the following we will usen=1 for
convenience unless otherwise noted.

Ill. THE STRUCTURE OF PHASE SPACE

The perturbation Hamiltoniaf6) shows that the motion
of an electron in crossed fields is composed of two parts,

tal perturbative treatmerjtl5]. An analysis of Hamiltonian

the electron moves on a Kepler ellipse. The fast motion

(13) shows that three adiabatic invariants determine thélong this ellipse is given by the angig, conjugate ton.

physics, or more specifically the invariant tori, namely,
n,L,, andQ, which are constants of motion generated by

Hamiltonian(13) [14],

L,=3,+K,, (16)
Q=7(3,-K)?— 43K, +I,K,), 17)
where
453 3 . a%(3+a?) 3 _ 18
=4—=— — —_ == oo
YTt 2 2(1+ad) 27 (18

B. Symmetries and scaling

Hamiltonian(1) is symmetric with respect to reflections at
the xy plane (parity) and with respect to the operation
y— =Y, Pxy— — Px, P,— — P, Which induces a generalized
time reversal symmetr{/16]. For the approximate Hamilto-
nians, these operations correspond tal,,{,,J;)
—(—K,—Ky,K,) for parity, and 0,,K,)—(—Jy,—K,)
for time reversal symmetry.

The external fields cause the elements of the ellipse, repre-
sented byl andK, to evolve slowly in time. This evolution

is very well described by the normalized Hamiltoniés),

and it is the main subject of this paper.

The interplay of fast and slow motion and the simplifica-
tion brought about by the normalized Hamiltonian are de-
picted in Fig. 1: the complicated motion in Cartesian coordi-
nateg Fig. 1(a)] includes the fast Kepler motion. Plotting the
same orbit inJK space(so-called rotor coordinatg®limi-
nates the fast motion. The normalized motion may then be
understood as averaging over the fast Kepler motion.

One can expect the averaging to be valid as long as the
two frequencies are sufficiently separated, i.e.,

JE 1

OKeple=—=~ —3> ® :1\/Bz+(3n|:)2
Kepler an Hﬁ L 2 .

(23

Here, w, is the frequency of the first-order motion of the
rotorsJ andK.

The general structure of phase space imposed by the nor-
malized Hamiltonian is expected to remain robust for high
fields. However, important limitations are imposed by the

Due to the parity symmetry, trajectories that are startegnapjility of the normalized Hamiltonian to describemixing

with z=p,=0 will always remain in thexy plane. This pla-

and ionization.

nar motion appears to be most important for the semiclassi- |n what follows, the structure of phase space generated by

cal analysis of the quantum specfrg5].

the normalized Hamiltoniar6) is presented under several

For F=0,L, is a constant of the motion, whereas for headings and compared to the exact motion as appropriate.

B=0,L, is a constant of the motion, making the normalized
Hamiltonian integrable in these cases. It follows that for

B<F andF<B the normalized motion becomes regular.

A very important and helpful property of Rydberg sys-

A. Poincare surfaces of section

For the normalized Hamiltonian with effectively two de-

tems in external fields is the scaling of their classical dynamgrees of freedom, Poincasaurface of sectioriPSOS plots

ics with respect to the external parametg8 In our ap-

constitute a valuable tool in displaying the structure of phase
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FIG. 1. A striking example of the simplifications introduced by our treatm@h&a periodic orbit with 23 loops in Cartesian coordinates
and (b) three loops in rotor coordinates. (b), the exact] motion (the trajectory is displayed using balls compared to the normalized
motion (solid).

space. From symmetry considerations we chidge0 and ay — Ak —

(d/dt)K,>0 as the surface of section. h=5V2n=q5- P53 Ky=—5V2n—0k— Pk,
Since the vectord and K are restricted to a sphere, it

would be ideal to plot PSOS’s on a sphere. However, in

order to plot it on a plane, we project this sphere by choosing p; — Pk —
the canonically conjugate variables Jy=—5v2n—=q5=pj  Ky=7V2n— gk~ Pk

2J, 2J,
W= b= T 1 1
Vn-2J, n—2J, J=5(a3+p3—n), K=5(ag+pi—n). (25
2K 2K
k= — ————, P=—————. (24) Figure 2 shows some typical PSOS plots. Exploiting the
Vn—2K, n—2K, time reversal symmetry, we show the upper half of each plot
only. The “hole” in the PSOS plot in Fig. @) is energeti-
These equations may be reversed: cally not accessible.
1.5 a j j ! 1.5 b‘

1.0

FIG. 2. Typical Poincaresurface of section
plots for the normalized motion. The fields are
fixed at B=0.40, F=0.05. The energy is
E=-0.60, —0.55, —0.50, —0.40[(@)—(d)]. The
positions of the four basic periodic orbits are in-
dicated. Because of symmetry, only one-half of
each surface of section needs to be displayed.

0.0
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0.6 T 0.6
0.4} 0.4} . .
FIG. 3. The two orbitsP¢ (solid and P,
0.2¢ 0.2F (dashedlin the normalized motion for the param-
=" 0.0} e 0.0f eters of Fig. Zc). We show their projection onto
(a) the J,J, plane and(b) the KK, plane. The
-0.2} -0.2} . y M .
starting point is marked by a square, and, in order
—0.4r —0.4¢ to show their sense of rotation, the orbits are not
-0.6 e -0.6 e completely closed.
-0.6~0.4~0.2 0.0 0.2 0.4 0.6 -0.6-0.4-0.2 0.0 0.2 0.4 0.6
I K

x X

The PSOS plots in Fig. 2 show that the motion may be- p, is very stable here; it may become unstable only for
come chaotic for intermediate energiesaround electric fields that are strong compared with the magnetic
E=—1/2n%). But for the fields chosen here the motion is field (see also Sec. IVE in the process generating two
mostly regular and the structuring of phase space by invaristable periodic orbits, which we also cXl} andX,.

ant tori is clearly visible. An analysis in terms of the adiabatic invariarits and

One can also see that the principal tori intersect the syme, [Egs. (16) and (17)] shows thatP,, becomes unstable for
metry linep;=px=0 (i.e.,J,=K,=0). Thus, we can obtain [14]

the important features of phase space by launching trajecto-

ries along this line only, varying, as we do hegg, while y<—1©a<0.6445Fn<0.21B, (28)
gk is adapted to match the desired energy. These initial con-
ditions will be used in the next section. What is more, thos ; - ; .
periodic orbits that result from the breakup of the field—freeqv'vi'i'lgog hkl)%rgor;aegsnsggt;lsllgs%gerlatlve to the electric field
tori, being symmetric with respect to the time reversal sym- s
metry, are located onJ,=K,=0 with (d/dt)K,>0 or
(d/dt)K,<0.

At least for small fields, it is useful to plot PSOS'’s for the . . .
exact (i.e., three dimensionglmotion using the variables L.e., for h|gr_1.electr|c flelds.. . -
above. For higher fields, the coupling to the third degree of 'I_'he_ position andl stab|I|ty. of more comp!|cated _perlodlp
freedom becomes more important and the torus structure i%rblts in the normalized motion are shown in the figures in
this projection on two degrees freedom becomes more an ec. IV.
more fuzzy.

v>1ea<1.85%Fn<0.61B, (29

C. Periodic orbits of the exact motion

B. Four basic periodic orbits The normalized Hamiltonian facilitates the search for pe-
jodic orbits of the exact motion where the periodicity of
(t) andK(t) is a necessary condition for periodicity of an

orbit of the exact motion. In addition, the Kepler motion

along ellipses, given byp,, has to be taken into account,
which can often be achieved by adjusting the initial angle of
¢, - The smaller the fields, the more loops are introduced by
the inclusion of¢, because thdK motion becomes slower
with respect to the fast motion.

Thus, finding periodic orbits in the exact motion from a

Iy J) = (— Ky, =Ky Ky, (26) perlod_|c o_rblt in the norr_nallzed motion is a two-step process.

After finding the periodicJK motion, it is often possible to
make the orbit close on itself.e., ¢, has to go through
multiples of 27) by merely varying the starting angle
$n(0). Inview of the complicated structure of the motion in

a six-dimensional phase space, this is a remarkable simplifi-

cation.

The PSOS plots in Fig. 2 show that the structure of phas
space generated from the normalized Hamiltoni&h is
dominated by four fixed points on the ling=px=0, cor-
responding to four one-looin JK space periodic orbits,
which we callPg, P,, X;, andX,.

The orbitsPg and P, (displayed in Fig. 3B exist for all
field strengths and energies examined. Ry, we have
along the orbit

which is equivalent toL,=0,L,=0,A,=0. This corre-
sponds to the motion in they planez=p,=0, andP; is
totally symmetric with respect to parity. These conditions
allow one to solve for the trajectory’s orbit analytically. For

Py we have When the motion contained in the robust fixed point
(Pg) is translated to Cartesian coordinates in this way, it
(Ix:dy 13| i= (= Ky, =Ky K72, (27 tumns out to be the one planar periodic orliienoted by
C, by Raithelet al.[4]) that dominates most of their photo-
whereT is the orbit’s period. absorption spectrgsee Fig. 4. In our description, the promi-

For intermediate energies and small electric fidlais in - nence of this orbit is clearly connected to the stability of the
Fig. 2b)], P, becomes unstable and bifurcates into the twomotion, and its special status is evident at once, proving that
stable orbitsX; andX,, which are related by the parity sym- both the action-angle variables we use, as well as the ap-
metry. Significantly, chaos spreads from this region of instaproximate Hamiltonian, are the most appropriate for this
bility. problem.
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<6JK>

_2 1 L i
-1 0 1
94

1.0 T T
(b)
FIG. 5. Average phase differencéd;c) along the line

p;=pk=0 as a function ofj; for the exactsolid) and the normal-
ized (dashed motion; the external parameters are the same as in

Fig. 2(c).

Py

0.0f
i IV. STABILITY ANALYSIS

_osl A. Intramanifold chaos

Another interesting view onto phase space is given by a
Lol ] stability analysis, specifically in terms of Lyapunov stability.
’ 0.0 o5 To Figure 2 reveals that for intermediate energies, the dpit
W becomes unstable. Chaos spreads from this region of insta-
bility and becomes strongest for energies aroung,

FIG. 4. Periodic orbit® in the exact motion(a) The motionis  \whereas the motion in am manifold is regular for low and
bound to thexy plane.(b) shows a comparison of the exdsblid) high energies. Because is fixed (or approximately con-

J motion (in terms of q; and p;) with the normalized motion  geryed in the exact motignthe chaotic motion described
(dashedl here may be termed intramanifold chddg]. This is to be
compared with the case of a pure magnetic fighte qua-

D. Phase difference dratic Zeeman effedi3,18]), where, due to the conservation
of L,, ann manifold does not have enough degrees of free-
dom for chaos. The latter problem shows significant chaos
only when differentn manifolds mix.

o ) The transition from order to chaos and back can be shown
which is 7 for P and 0 forP,. This can also be seen from in a more compact way: we restrict ourselves to trajectories
Egs.(26) and(27). starting on the ling;=px=0 (see Sec. Ill A and plot the

To see what this means for the struc.ture of phase SPaCfaximum Lyapunov exponent as a function Bfand g
we have computed an average phase difference for arb|trar(§,'_-ig_ 6). The maximum Lyapunov exponent has been com-
trajectories. For a point on a trajectory, the phase differencgyted by following the separation of nearby trajectories over
may be defined as the anglé;c=dJ;—dk, Where 3 finite time interval. Thus, for regular orbits the Lyapunov
tans;=dJ,/dJy is the direction of the trajectory in the exponent is positive but smalhis value depends mainly on
JJy plane, anddy is defined correspondingly. Computing B andF, and on the time interval chosgerbut it is clearly
the average value of the ang&y requires computing the separated from the Lyapunov exponents of trajectories in
average values of its sine and cosine. chaotic regions.

In Fig. 5 we have plotted the average valuesgg along In addition, in Fig. 6 we show the positions of periodic
trajectories started on the limg=px=0. One can see that orbits with up to four loops in the rotor coordinates. The
phase space is dynamically separated into two regionperiodic orbitsPg and P, can be seen to extend from the
aroundPg andP, with an average phase difference of 0 andminimum to the maximum energy. For intermediate ener-
a, respectively. This behavior is not restricted to the speciagies,P, bifurcates and becomes unstalftég. 6), generating
initial conditions p;=px=0. In parameter regimes with the X;,X, orbits. More complicated orbits bifurcate from
widespread chaos, the trajectory may jump between the twthis pair of orbits. They get squeezed together aroBgd
domains. thus creating chaos via overlapping resonances.

It should be noted that the average phase difference be- A Lyapunov analysis of the exact motidirig. 6(b)]
comes interesting only by the coupling of the rotors throughshows the same regions of instability. The chaos we see here
the second-order terms in Hamiltonié®). In the first-order is related to the evolution of andK. For the fields consid-
motion, the phase difference is merely a constant, and magred here it shows little dependence on the third degree of
acquire any value. freedom @@,), which is neglected here and in what follows.

Figure 3 shows thaPg and P, are rotating in the same
direction. They differ mainly by their phase difference be-
tween theJ and theK rotor (projected onto they plane,
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0.015 (a) 0.015
0.40 B
0.010 0.30 4 o0.010
3 <9
0.20 B
1 o0.005 0.005
] 0.10 ]
0.000 0.00 0.000
0
(b) 0.015 (b) o0.20 0.015
b 0.15
0.010 : 0.010
£ I
= 0.10]
[
1 o0.005 0.005
0.05+
0.000 0.00 0.000

FIG. 6. Stability analysis as a function of the energy at g, 7. Stability analysis ofa) the normalized an¢b) the exact
B=0.5,F=0.05 along the symmetry ling,=px=0: comparison  mntion as in Fig. 6, now as a function of the electric fi€ldat
of the normalized(a) J motion with the (b) exact motion. The E=—%, B=0.5. Here, only periodic orbits with up to three loops
shading is chosen according to the value of the maximum LyapunoY;e marked. Note the different scales(@ and (b): in the exact
exponent, dark regions denoting chaotic motion. The smaller panels,qtion strong ionization sets in for electric fields abdve-0.15

on the right-hand side show the average Lyapunov exponent along, 4 the maximum value o in this panel is aF =0.2, which is
horizontal lines; numerical Lyapunov exponents below a smalljarked by a line in(a).

threshold are neglected. In addition,(&), we indicate the positions
of periodic orbits with up to four loops in the normalized motion,  The correlation of short unstable periodic orbits with the
distinguishing between stabiblack and unstabléwhite) motion.  |ocation of chaotic regions becomes evident again if we in-
vestigate how the stability depends on the magnetic field
B. Variation with the fields (Fig. 8. We chose to display this for thiestermediateenergy
o ) ] ~ E=—1, which appears to show most widespread chaos. One
Investigating different values df, one finds that the bi- ecognizes again that even for larger fields, the approximate
furcation of P, into X, andX; fails to take place for higher treatment reproduces well the location of chaotic regions.
F values[see also Eq(28)]. As a consequence, there is no visible changes in the structure of chaotic regions appear
chaos visible for these values. only aroundB=0.9. On the average, the extent of chaotic
This behavior can be investigated through a plot similar toregions grows witrB.
Fig. 6, fixing the energy & = — 3 and varyingF [Fig. 7(a)].
For low but finiteF, P is unstable and a considerable frac- C. Lines of stability
tion of phase space is chaotic. We find that even a rather
small electric field enhances chaos considerably with respeﬁt\ g

to the quadratic Zeeman effedn the absence oF). At oo tic and magnetic fields. To this end, we computed a

F~0.11, the orbitsX, and X, vanish, andP, becomes 500 humber of trajectories throughout the surface of section
stable, making the overall motion much more regular. for each value oB andF. As a measure of chaos, we use the
At yet higherF (or lower B with respect tdF), P bifur-  5yerage value of the maximum Lyapunov exponéthie
cates in an analogous way, giving rise to strong chaos sukolmogorov-Sinai entropy19]). One can show that for this
rounding it. Thus the stability of the overall motion is very problem to first order in the fields, equal areas on the SOS
much dictated by the stability of the two orbig andP,,. represent equal volumes in phase space.
Note, however, that the chaotic region generated by the in- The most striking feature seen in Fig. 9 is a “ridge of
stability of Pg in Fig. 7(a) is beyond the ionization threshold stability” at F/B~4/7, which penetrates a large chaotic area.
now. Up toF~0.9, the agreement with the exact motion isOn this line, the PSOS becomes very regdlag., Fig.
very good. 10(g)]. Note that chaos is strongest just below this line, while

Further windows on the dynamics are opened by examin-
the percentage of chaotic trajectories as a function of



55 CHAOS AND ORDER IN CROSSED FIELDS 6547

D. Numerical constants of the motion

The lines of stability may be made visible in yet another
way by starting from the fact that regular motion is associ-
ated with the existence of approximate constants of the mo-
tion. One can try numerically to find a constant of the motion
by assuming it to be in the form of a polynomjalin some
dynamical variables with free coefficients that are to be com-
puted by a fitting procedure. Trajectories are started on a grid
throughout phase space and integrated for a number of time
steps. The coefficients are determined so as to minimize the
mean squared deviation gfalong each trajectory from the
average ofp for that trajectory. To exclude the trivial zero
solution, one point on each trajectory is chosen to be close to
a quantity characteristic for that trajectory like the average of
a dynamical variable. The normalized mean deviatioof
p from constancy averaged over all trajectories indicates the
quality of the numerical constant of the motion.

In Fig. 11 we ploto for a polynomialp in J,, J,, Ky,
andK, as a function of the electric field. The weak line of
stability is visible only for a polynomial of third order while
the strong line of stability shows itself in both cases. Both
the second- and the third-order polynomial perform mostly
better than the analytic adiabatic invaridh{Eq. (17)]. Plot-
ting o as a function oB andF for a third-order polynomial
reveals the existence of the lines of stability for very low
fields as well.

The procedure described here does not appear to be ap-

motion as in Fig. 6, now as a function of the magnetic fiBlcat

E=- % ,F=0.05. Here, only periodic orbits with up to three loops
are marked.

(b)

E. Stability of the planar motion

As mentioned above, the orli represents the motion in
for F—0 andB—0 the normalized motion becomes regular, the xy plane, and its stability becomes an indicator for the
as expected. stability of the exact motion with respect to tkg plane. To

At F/B~1/5, another line of stability can be detected, butdemonstrate this, in Fig. 12, we have plotted the Lyapunov
it is much weaker than the first one. These remarkable altestability of P4 in the normalized motion and the maximum
nations between order and chaos are pictured by a series distance to thexy plane for an arbitrary orbit of the exact
PSOS plots in Fig. 10 where only the electric field is motion initially close to thexy plane: when the motion with
changed. The two lines of stability occur close to the fieldrespect toxy plane becomes unstable, such an orbit will
values where the second order quantum perturbation expregepeatedly move away exponentially fast from sheplane
sion becomes separal20]. and return to it symmetrically.

0.8

(a) (b) 0.06

0.6 -

0.02

- 0.0 L 1 1 | i %p ] 0.00
02 04 06 08 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0

FIG. 9. Kolmogorov-Sinai entropy fdia) the normalized an¢b) the exact motion as a function 8f andF, showing the two ridges of
stability (marked by two linek In the exact motion the strong line of stability cannot be detected due to the onset of ionization. In this figure,
dark regions denote regions with predominantly chaotic motion. In the dotted aréasamly ionizing trajectories were found. lib), the
field values are restricted to the box drawn(a.
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FIG. 10. Surface of section
plots for the normalized motion
showing repeated transitions from
order to chaos and back &
=—3 B=0.6, andF=0.001(a),
0.01 (b), 0.06 (c), 0.12(d), 0.15
(e), 0.18(f), 0.34(g), 0.60(h), and
1.00 ).

Both panels show that the motion with respect toxlye  bandwidth 21+ 1 provided the basis is ordered appropri-
plane becomes unstable approximately for0.62B when  ately; thus it is possible to go up to very high valuesnof
P, becomes unstable due to the bifurcation idtpand X. To compare these approximate eigenstates with the eigen-
There is another region of instability arouBe=0.55, which ~ States of the exact motion, we have computed some low-
occurs after a two-loop periodic orbit has bifurcated from!ying energy levels of Hamiltoniafl) by diagonalizing the
P.. A third region of instability in the exact motion, at yet Hamilton matrix in a basis of Sturmian functiopgl]. We

higher B, is not reproduced by the normalized Hamiltonian. found the energy levels to be correct to at least second order
in the fields, i.e., the error scales liké (for some levels like

€ whenB=eb andF = ef, whereb andf are fixed.

The latter is true only after adding two constant terms

A. Diagonalization of the approximate Hamiltonian (known from the single field theoriggo the normalized

In this section, we will discuss some of the quantum me-Hamiltonian(6), n_amel_y,l_32n2/1_6 [22] and 1¥*n*/16[23].
chanical properties of Hamiltoniai6) that can be quantized 'N the semiclassical limit of high, these terms are small
by replacingd andK by their corresponding angular momen- with respect to the remaining second-order terms.
tum operators. Hamiltoniaii6) is diagonalized in eacim
manifold (n=1,2,...) in abasis consisting of products of
eigenstates of the angular momedtandK:

V. QUANTUM MECHANICS

0.25t ‘ !

0.20]

[mymyen) =|[jmy)[km), (30 0.15}
L
where j=k=(n—1)/2 and m;,mg=—(n—1)/2, 0.10
—(n—1)/2+1,...,(n—1)/2. The parity symmetry may be j
used by selecting the linear combinations 0.05
0.00[
Imymy, =)= (Jmymy) = [memy))/+2, (3D 0.0
F
my=my (my>my for “—"), which have the parity FIG. 11. Quality of the fit of a numerical approximate constant

+(—1)Motme), of the motion as a function df at E=— 3 andB=0.6. The curve

As the basis is finite for fixed (of dimensionn®) and all  marked by squares has been generated by a fit of a third-order
the integrals may be evaluated algebraically, the exact erpolynomial, the solid curve is for a second-order polynomial. We
ergy levels may easily be computéslith very small numeri-  also show the quality of the adiabatic invariafit [Eq. (17)]
cal errorg. For givenn, the Hamilton matrix is banded with (crosses
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(a) 0.15 [ ; .
0.025 0.6
0.020 I
0.10 I
- 0.015 0.4
@ |
0.010
0.05 [
0.2
0.005 L
L 0.000
10 00 L L L 1 L L 1 1
0.0 0.2 0.4 0.6 0.8 1.0
Fn*
(b) o0.15 0
FIG. 13. Plotted as a function dtn* (at Bn®=1,n=50, odd
parity) is the parameteB that best fits a Brody distribution to the
=B nearest-neighbor energy level statistics of the normalized Hamil-
0.10 tonian (6). Note the minima of3 at Fn*=0.2 andFn*=0.55, im-
” plying a mostly Poissonian distribution, i.e., “regular’ quantum
= spectra, located on the two lines of classical stability.
-6
008 izing Hamiltonian (6) reveals the influence of the lines of
stability on the quantum spectt&ig. 13. However, this is
-8 successful only for very strong magnetic fields, so that a
comparison to the energy levels of the exact Hamiltonian is
not possible.

FIG. 12. Stability of the planar motion as a function Bfand
F atE=— % (a) shows the maximum Lyapunov exponent for the
P orbit of the normalized motion. Field values at whiéh is One way to compare eigenstates of Hamiltoni@nwith
stable are plain white. Otherwise a bright shading denotes a largghe classical dynamics is to plot their coefficients in the
Lyapunov exponent. Ir{b), for the same fields values, the gray j K, basis and to overlay the projection ontgk, space of
shading codes the logarithm of the maximum distance from thgnhea corresponding trajectory, which we have done in Fig. 14.
xy plane for a trajectory that is launched a very small distance fromrpig corresponds to comparing a trajectory in Cartesian

that plane. Here, dark regions mean instability of the motion Withspace with the configuration space representation of a wave
respect to thexy plane, while ionizing trajectories are white. Note function

that these methods are not sensitive to the stability of the motion
within the xy plane.

C. Coherent state analysis

A more appropriate way of comparing classical and quan-
tum mechanics is to compute phase space projections of the
wave function, e.g., the Husimi function of a wave function
in configuration space, which is the projection of the wave
Investigations of eigenvalues statistics are a commoifunction on minimum uncertainty Gaussian wave packets
means to find the signatures of classical mechanics in thg27]. In the present case, we have to use the coherent states
corresponding quantum mechanical system. An example isf the group SI(2)® SU(2).
given by the distribution of nearest-neighbor level spacings. SU(2) coherent state;¢;) and|6x ¢) for the angular
Spectra for regular system in general follow the Poisson dismomental andK are obtained28] by rotating the minimum
tribution [24], which shows its maximum at zero spacing uncertainty stat¢j —j) through the angleg; and ¢; where
between eigenenergies, while in the spectra of chaotic sys-
tems that are described by Wigner statis{i2§] the prob-

B. Quantal manifestations of chaos

n
Jy==Sind;cosp;,

ability for zero spacing vanishes. 2

For systems with a mixed phase space, a useful interpo-
lation between these two extremes is given by the Brody
distribution[26] n )

Jy=§sm033|n¢>J , (33
Pﬁ(x)=axﬁefbxﬁ+1, 0<pB<1, (32

wherea andb are normalizing factor§26]. For =0, the n
Poisson distribution is recovered, whiiz=1 corresponds to Jz:icos%’

the Wigner distribution.
Plotting, as a function of the fields, the paramegethat
best fits this distribution to the level statistics of the normal-and one obtain§29]
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FIG. 14. Quantum mechanical eigenstates of the normalized Hamiltonian that follow the classical periodR.dteftsandP, (right),
with n=30, B=0.45, F=0.045.(a) and (b) show projections ontd,K, space. Due to the time reversal symmetry, these periodic orbits
retrace themselves after a half period. Pgr, we havel,=K,. (c) and(d) show quantum surfaces of secti@upper half. The correspond-
ing PSOS is shown in the lower half. Note that the wave functiofdjrextends along the separatrix, the unstable fixed point of which is
P., avoiding regions of stable motion, and this wave function may be dubbed a quantum state in the intramanifold chaos. In contrast, the
wave function in(b) extends over invariant tori in the vicinity d#s only.

j

|635)= >

m=—j

12 nal Hamiltonian, the normalized Hamiltonian gives a clear
view of the nonlinear dynamics, the structure of phase space,
its periodic motions, and chaos-order alternations. It de-

X sin ¥ ™(6,/2)cod "™(65/2)e AT ™e|jm),  (34) scribes that part of the dynamics that appears to determine
the “physics” of the motion, namely, the evolution of Ke-
and similarly forK. JK coherent states, coherent states ofpler ellipses under the influence of the external fields. The
the group SW2)® SU(2), at given “classical coordinates]  special status assigned to certain dominant periodic orbits by
andK, may then be formed as products of individual coher-experimental photoabsorption spectra emerges naturally
ent states: from our treatment.
10165, 0 i) = | 03533 | O ic) - (35) By comparing our results with those of exact dynamics,
we see that the normalized Hamiltonian represents a very
Coherent states may now be used, e.g., to find the overlayaluable guide to the properties of the exact motion, making
of a wave function with a classical orbit. More importantly accurate predictions for low fields, classically as well as
choosing the coherent states along the Poinsaréace of quantum mechanically.

section, one obtains the so-called quantum surface of section In particular, the normalized Hamiltonian shows how an

(QSO0S. Figure 14 displays QSOS's for wave functions thatelectric field induces the onset of chaotic motion: even small

strongly overlap with the two basic periodic orbi’s and  values ofF cause chaos when a magnetic field alone is not

P,. The figure shows how the quantum states follow thesufficient to obtain visible chaos. This intramanifold chaos is

underlying classical structures, i.e., the wave function thatinked to the stability of a simple periodic orbiP()). Chaos

corresponds tdP, extends over the entir@ntramanifold emerges from the middle of an manifold and vanishes
chaotic region formed arounid, [Fig. 14d)], while in Fig.  again wherP, becomes stable. In addition, this Hamiltonian

14(c), the wave function is restricted to the invariant tori in can predict the location of regions of regular and chaotic

the vicinity of Py. motion; surprisingly, the induced structure remains valid for

high fields.

2]
j+m

VI. CONCLUSIONS

We hqve shown that the exact Hamilt_oni_an of a Rydberg ACKNOWLEDGMENTS
electron in crossed electric and magnetic fields can be use-
fully approximated by combining the normal form theory, J.v.M. is grateful to the Alexander von Humboldt Foun-
the classical perturbation theory, and Lie algebra. Despite thdation for financial support. We thank the National Science
enormous size of the parameter and phase space of the origieundation for its support of this research.



55 CHAOS AND ORDER IN CROSSED FIELDS 6551

[1] M. Born, The Mechanics of the AtorUngar, New York, [15] E. A. Solov’ev, Zh. Eksp. Teor. Fiz82, 1762 (1982 [Sov.

1960, pp. 235-241. Phys. JETPS5, 1017(1982].
[2] T. F. GallagherRydberg Atom$Cambridge University Press, [16] J. A. G. Roberts and G. R. W. Quispel, Phys. R2p6, 63
Cambridge, 1994 (1992.
[3] H. Friedrich and D. Wintgen, Phys. Rep83 37 (1989. [17] J. von Milczewski, G. H. F. Diercksen, and T. Uzer, Phys.
[4] G. Raithel, M. Fauth, and H. Walther, Phys. Rev44, 1898 Rev. Lett.73, 2428(1994).
(1991). [18] H. Hasegawa, M. Robnik, and G. Wunner, Prog. Theor. Phys.
[5] G. Raithel, M. Fauth, and H. Walther, Phys. Rev4& 419 98, 198(1989.
(1993. [19] A. J. Lichtenberg and M. A. LiebermaRegular and Chaotic
[6] D. Delande and J.-C. Gay, ifhe Hydrogen Atomedited by Dynamics(Springer-Verlag, New York, 1992
G. Bassani, M. Inguscio, and T. Haens(®pringer-Verlag, [20] J. Main, Ph.D. thesis, UniversttaBielefeld, 1991 (unpub-
Berlin, 1989, pp. 323-334. lished.
[7] M. L. Zimmerman, M. M. Kash, and D. Kleppner, Phys. Rev. [21] C. W. Clark and K. T. Taylor, J. Phys. B5, 1175(1982.
Lett. 45, 1092(1980. [22] D. Delande and J. C. Gay, J. Phys1B L335 (1984.
[8] J. von Milczewski, G. H. F. Diercksen, and T. Uzer, Phys.[23] M. L. Zimmerman, M. G. Littman, M. M. Kash, and D. Klep-
Rev. Lett.76, 2890(1996. pner, Phys. Rev. 20, 2251(1979.
[9] J. A. Yeazellet al, Phys. Rev. Lett70, 2884 (1993. [24] M. V. Berry and M. Tabor, Proc. R. Soc. London, Ser356,
[10] M. J. Gourlay, T. Uzer, and D. Farrelly, Phys. Rev4A 3113 375 (1977.
(1993; 48, 2508E) (1993. [25] O. Bohigas and M. J. Giannoni, Mathematical and Compu-
[11] P. Schmelcher and L. S. Cederbaum, Phys. Re¥.7A2634 tational Methods in Nuclear Physicedited by J. S. Dehesa
(1993. et al, Lecture Notes in Physics Vol. 20&8pringer-Verlag,
[12] M. J. Englefield,Group Theory and the Coulomb Problem Berlin, 19849, p. 1.
(Wiley-Interscience, New York, 1972 [26] T. A. Brody et al, Rev. Mod. Phys53, 385(1981).
[13] J. C. Gay, inProgress in Atomic Spectroscopy, Partelited [27] F. Haake,Quantum Signatures of ChadSpringer-Verlag,
by H. J. Beyer and H. KleinpoppefPlenum, New York, Berlin, 1991.
1984, p. 177. [28] W.-M. Zhang, D. H. Feng, and R. Gilmore, Rev. Mod. Phys.

[14] J. von Milczewski, Doctoral dissertation, Technical University 62, 867(1990.
of Munich, 1995(unpublishegl [29] C. C. Martens, J. Chem. Phya6, 1870(1992.



