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Chaos and order in crossed fields

Jan von Milczewski and T. Uzer
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430

~Received 16 December 1996!

Atoms with a single highly excited electron~so-called Rydberg atoms!, when placed in external fields,
become atomic-scale laboratories in which the quantum mechanics of strongly nonlinear systems can be tested.
Especially the extensive symmetry breaking introduced to the Coulomb potential by crossed electric and
magnetic fields leads to rich nonlinear dynamics and is also a source of great complexity. In this paper, we
analyze the nonlinear dynamics aspects of this atomic system, such as periodic orbits, bifurcations, order-chaos
transitions, and islands of stability. In particular, we present an approximate Hamiltonian that turns out to be
very effective in bringing out the classical structures that support the complexity of the motion. We conclude
with a coherent state analysis that allows a direct comparison of quantum and classical results.
@S1063-651X~97!14705-5#

PACS number~s!: 05.45.1b, 03.20.1i, 03.65.Sq
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I. INTRODUCTION

The hydrogen atom in perpendicular~crossed! electric
and magnetic fields is a classic problem of the early quan
theory@1#. However, in the intervening years, highly excite
hydrogenic atoms~so-called Rydberg systems@2#! in exter-
nal fields have emerged as atomic-scale laboratories w
the quantum mechanics of classical chaotic systems ca
tested@3#. In particular, Rydberg systems in crossed fie
have become testing grounds for the quantum-mechan
signatures of three-dimensional chaotic motion@4,5#.

The symmetry breaking of the Coulomb potential@6# in-
duced by external fields affects the three quantum num
n, l , andml of the Rydberg electron differently: as long as
single field direction is present,ml remains a good quantum
number,l breaks down extensively, whereasn breaks down
only gradually with increasing magnetic field@3#. Therefore,
an n manifold of electronic energy levels does not ha
enough degrees of freedom for chaos, which only devel
when differentn shells mix@7# ~‘‘intermanifold chaos’’!. In
contrast, the extensive symmetry breaking introduced by
misaligned~in practice, crossed! fields causes ‘‘intramani-
fold chaos.’’ This chaos within ann manifold is a desirable
scenario from an experimental point of view because,
principle, it can be tuned by varying the system paramet

Of course, the full dynamics has three degrees of freed
and this feature causes much of the immense complexit
the dynamics. It is not easy to obtain an overview of t
motion of a system with three degrees of freedom si
phase space has six dimensions, and Poincare´ surfaces of
section are no longer useful. The high dimensionality of
crossed-fields problem opens the floodgates for a wealt
new physics, which is only possible beyond two degrees
freedom: for instance, Arnol’d diffusion can take place
this experimentally accessible system@8#. Less esoterically,
it also becomes possible to form electronic wave pack
localized in all spatial dimensions, and the observation
these wave packets, which was accomplished recently@9#,
opens an exciting window on the dynamics of the electro

Using the ‘‘old quantum theory’’ and advanced metho
of celestial mechanics, Pauli provided an elegant first-or
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solution to the crossed-fields problem as early as 19
which emphasized how the solution progresses from a n
degenerate two-degree-of-freedom problem to a doubly
generate one with two identical frequencies as the angle
tween the fields approaches 90°@1#. However, when the
fields are strong, this solution is unable to describe the co
plex dynamics.

Recently, Gourlayet al. @10# have derived a Hamiltonian
that describes the classical motion in the crossed-fields p
lem correct to second order in the fields. The purpose of
paper is to analyze the nonlinear dynamics aspects of
atomic problem using this approximate Hamiltonian, whi
turns out to be very effective in bringing out the classic
structures that support the complexity of the motion. In p
ticular, we will show that the most prominent periodic orb
one that dominates the experimental results for a wide ra
of parameters@4,5#, emerges naturally as the most stable
bit in our analysis.

This paper is organized as follows. In Sec. II, we intr
duce the approximate Hamiltonian, and we describe its s
metries and scaling properties. We apply perturbation the
to reduce the dimensionality of this problem. In Sec. III, w
present the structure of phase space generated from the
proximate Hamiltonian. Special attention is given to a stab
ity analysis~Sec. IV!, revealing interesting chaos-order alte
nations that indicate the existence of approximate const
of motion. These results are compared with the exact mot
Section V compares quantum mechanical properties of
approximate Hamiltonian with our classical findings. T
work is summarized in Sec. VI.

II. PERTURBATION THEORY

Neglecting relativistic effects, the motion of an electron
perpendicular electric and magnetic fields is described by
perturbed Coulomb Hamiltonian@11#

H5
1

2
p21

B

2
Lz1

B2

8
~x21y2!2

1

r
1Fx. ~1!

We use atomic units throughout, i.e., the magnetic fieldB is
given in units ofB05(e/\)3me

2c52.353105 T and points in
6540 © 1997 The American Physical Society
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55 6541CHAOS AND ORDER IN CROSSED FIELDS
the z direction whereas the electric fieldF is in units of
F05e5me

2/\455.1431011 V/m and points in thex direction.
In the remaining part of this paper we will refer to the d
namics induced by Hamiltonian~1! as exactas opposed to
theapproximatetreatment outlined below.

In this section we will only sketch the derivation of th
approximate Hamiltonian and refer the reader interested
the details to Ref.@10#. The regularization of Hamiltonian~1!
in the four Kustaanheimo-Stiefel coordinatesu and their
conjugate momentaPu leads to the pseudo-Hamiltonian

H5
4

v
5
1

2
~Pu

21u2!1
2

v2BLzu
212

B2

v4u
2~u1

21u4
2!~u2

21u3
2!

1
8F

v3 u
2~u1u31u2u4!, ~2!

where

v5A28E

andLz is thez component of the electronic angular mome
tum L5r3p.

A useful view on the dynamics of Hamiltonian~2! is
given by the following set of canonical variables:

Lz5
1

2
~ I b1I d!, fLz

5fb1fd ,

Az5
1

2
~ I b2I d!, fAz

5fb2fd ,

n5
1

2
~ I a1I c!, fn5fa1fc ,

DLz
5
1

2
~ I a2I c!, fDLz

5fa2fc , ~3!

where the action variablesI a , . . . ,I d and their conjugate
anglesfa , . . . ,fd have been introduced in@10#. The con-
served quantityDLz

and its conjugate anglefDLz
are due to

the introduction of a fourth degree of freedom by t
Kustaanheimo-Stiefel transformation, and the physical m
tion may be recovered by requiringDLz

50. The quantityn
is the classical analog to the principal quantum numb
given also by the harmonic oscillator part of Hamiltoni
~2!:

2n5 1
2 ~P21u2!. ~4!

A. Reduced dimensionality Hamiltonians

When the normal form resulting from the classical pert
bative treatment is expressed in terms of the two ang
momentaJ andK , the Lie-algebraic generators of the grou
SU~2!^SU~2!, isomorphic to the symmetry group SO~4! of
the Coulomb problem@12#,

J5~L1A!/2, K5~L2A!/2, ~5!
in

-

-

r,

-
ar

it contains a pair of degenerate, strongly coupled asymme
tops in these two generators:

E~2!52
1

2n2
1
B

2
~Jz1Kz!2

3Fn

2
~Jx2Kx!

1
B2n2

16
@3n224~Jz

21Kz
22JzKz!28~JxKx1JyKy!#

1
F2n4

16
@217n2112~Jx

21Kx
21JxKx!#

2
FBn3

2
~JzKx2JxKz!. ~6!

In the following, we will refer to this Hamiltonian asnor-
malized. Here,A is the Runge-Lenz-Laplace vector, whic
indicates the semimajor axis of the elliptic orbit in th
Kepler-Coulomb problem.A is given by@13#

A5
1

A22H0
S p3L2

r

r D , ~7!

where

H05
p2

2
2
1

r
~8!

is the energy of the field-free motion.
The vectorsJ andK have the normn/2, which is a con-

served quantity in our treatment, making Hamiltonian~6!
effectively two dimensional. The third degree of freedom
represented byn and its canonically conjugate anglefn .

The vectorsJ andK obey the angular momentum Poisso
bracket relations, and the equations of motion may be fo
from

d

dt
J5@J,H#5¹JH3J, ~9!

and correspondingly for (d/dt)K , with H5E(2)(J,K ). By
@ ,# we denote the Poisson bracket, and¹J denotes the dif-
ferentiation with respect to (Jx ,Jy ,Jz).

We will rely on the normalized Hamiltonian~6! to ana-
lyze the motion in this system.

However, it is possible to perform a further approxim
tion to smooth out the chaos@14#. A pair of rotations, one for
J,

S J̃x

J̃y

J̃z

D 5
1

A11a2S 1 0 a

0 1 0

2a 0 1
D S JxJy

Jz
D , ~10!

where

a5
3nF

B
, ~11!

and a corresponding one ofK→K̃ with the transpose of the
matrix in Eq. ~10! is needed to simplify the linear terms i
Hamiltonian~6! to
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6542 55JAN von MILCZEWSKI AND T. UZER
Ẽ~1!52
1

2n2
1vLL̃z , ~12!

whereL̃5 J̃1K̃ , Ã5 J̃2K̃ .
Averaging over the linear motion, which is harmonic wi

the frequencyvL5 1
2AB21(3nF)2, results in an integrable

approximation@14#:

Ẽad~J,K !5Ẽ~1!1C1
n2

128vL
2 @d1n

21d2~ J̃z1K̃z!
2

1d3~ J̃z2K̃z!
22d4~ J̃xK̃x1 J̃yK̃y!#, ~13!

where

C5
3B2n4

16
2
17F2n4

16
, ~14!

d15212B2F2n2,

d2522B4124B2F2n2154F4n4,

d3526B41162F4n4,

d4516B41144B2F2n2. ~15!

Hamiltonian~13! is equivalent to the second-order qua
tal perturbative treatment@15#. An analysis of Hamiltonian
~13! shows that three adiabatic invariants determine
physics, or more specifically the invariant tori, name
n,L̃z , andV, which are constants of motion generated
Hamiltonian~13! @14#,

L̃z5 J̃z1K̃z , ~16!

V5g~ J̃z2K̃z!
224~ J̃xK̃x1 J̃yK̃y!, ~17!

where

g54
d3
d4

52
3

2
1
a2~31a2!

2~11a2!
, 2

3

2
<g,`. ~18!

B. Symmetries and scaling

Hamiltonian~1! is symmetric with respect to reflections
the xy plane ~parity! and with respect to the operatio
y→2y, px→2px , pz→2pz , which induces a generalize
time reversal symmetry@16#. For the approximate Hamilto
nians, these operations correspond to (Jx ,Jy ,Jz)
↔(2Kx ,2Ky ,Kz) for parity, and (Jy ,Ky)→(2Jy ,2Ky)
for time reversal symmetry.

Due to the parity symmetry, trajectories that are star
with z5pz50 will always remain in thexy plane. This pla-
nar motion appears to be most important for the semicla
cal analysis of the quantum spectra@4,5#.

For F50, Lz is a constant of the motion, whereas f
B50,Lx is a constant of the motion, making the normaliz
Hamiltonian integrable in these cases. It follows that
B!F andF!B the normalized motion becomes regular.

A very important and helpful property of Rydberg sy
tems in external fields is the scaling of their classical dyna
ics with respect to the external parameters@3#. In our ap-
e
,

d

i-

r

-

proximate treatment, the quantityn is conserved and may b
regarded as an additional external parameter~this is the price
that one has to pay in reducing this system from 3 to
degrees of freedom!. It is more convenient to use the scalin
of the system with respect ton instead of the usual scalin
with the magnetic field@3#.

Calculations done with a fixedn may be transferred to the
dynamics fornÞ1 by scaling

B/n3, F/n4, ~19!

tn3, E/n2, ~20!

Jn, Kn, ~21!

rn2, p/n. ~22!

Quantum mechanically, constantn means that we remain
within onen manifold. In the following we will usen51 for
convenience unless otherwise noted.

III. THE STRUCTURE OF PHASE SPACE

The perturbation Hamiltonian~6! shows that the motion
of an electron in crossed fields is composed of two pa
which are decoupled by perturbation theory: For short tim
the electron moves on a Kepler ellipse. The fast mot
along this ellipse is given by the anglefn conjugate ton.
The external fields cause the elements of the ellipse, re
sented byJ andK , to evolve slowly in time. This evolution
is very well described by the normalized Hamiltonian~6!,
and it is the main subject of this paper.

The interplay of fast and slow motion and the simplific
tion brought about by the normalized Hamiltonian are d
picted in Fig. 1: the complicated motion in Cartesian coor
nates@Fig. 1~a!# includes the fast Kepler motion. Plotting th
same orbit inJK space~so-called rotor coordinates! elimi-
nates the fast motion. The normalized motion may then
understood as averaging over the fast Kepler motion.

One can expect the averaging to be valid as long as
two frequencies are sufficiently separated, i.e.,

vKepler5
]E

]n
'

1

n3
@vL5

1

2
AB21~3nF!2. ~23!

Here,vL is the frequency of the first-order motion of th
rotorsJ andK .

The general structure of phase space imposed by the
malized Hamiltonian is expected to remain robust for hi
fields. However, important limitations are imposed by t
inability of the normalized Hamiltonian to describen mixing
and ionization.

In what follows, the structure of phase space generated
the normalized Hamiltonian~6! is presented under sever
headings and compared to the exact motion as appropri

A. Poincaré surfaces of section

For the normalized Hamiltonian with effectively two de
grees of freedom, Poincare´ surface of section~PSOS! plots
constitute a valuable tool in displaying the structure of ph
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FIG. 1. A striking example of the simplifications introduced by our treatment:~a! a periodic orbit with 23 loops in Cartesian coordinat
and ~b! three loops in rotor coordinates. In~b!, the exactJ motion ~the trajectory is displayed using balls! is compared to the normalize
motion ~solid!.
it
i
in

he
lot
space. From symmetry considerations we choseKy50 and
(d/dt)Ky.0 as the surface of section.

Since the vectorsJ and K are restricted to a sphere,
would be ideal to plot PSOS’s on a sphere. However,
order to plot it on a plane, we project this sphere by choos
the canonically conjugate variables

qJ5
2Jx

An22Jz
, pJ52

2Jy
An22Jz

,

qK52
2Kx

An22Kz

, pK5
2Ky

An22Kz

. ~24!

These equations may be reversed:
n
g

Jx5
qJ
2
A2n2qJ

22pJ
2, Kx52

qK
2

A2n2qK
22pK

2 ,

Jy52
pJ
2
A2n2qJ

22pJ
2, Ky5

pK
2

A2n2qK
22pK

2 ,

Jz5
1

2
~qJ

21pJ
22n!, Kz5

1

2
~qK

21pK
22n!. ~25!

Figure 2 shows some typical PSOS plots. Exploiting t
time reversal symmetry, we show the upper half of each p
only. The ‘‘hole’’ in the PSOS plot in Fig. 2~d! is energeti-
cally not accessible.
e

-
of
.

FIG. 2. Typical Poincare´ surface of section
plots for the normalized motion. The fields ar
fixed at B50.40, F50.05. The energy is
E520.60,20.55,20.50,20.40 @~a!–~d!#. The
positions of the four basic periodic orbits are in
dicated. Because of symmetry, only one-half
each surface of section needs to be displayed
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FIG. 3. The two orbitsPs ~solid! and Pu

~dashed! in the normalized motion for the param
eters of Fig. 2~c!. We show their projection onto
~a! the JxJy plane and~b! the KxKy plane. The
starting point is marked by a square, and, in ord
to show their sense of rotation, the orbits are n
completely closed.
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The PSOS plots in Fig. 2 show that the motion may b
come chaotic for intermediate energies~around
E521/2n2). But for the fields chosen here the motion
mostly regular and the structuring of phase space by inv
ant tori is clearly visible.

One can also see that the principal tori intersect the s
metry linepJ5pK50 ~i.e.,Jy5Ky50). Thus, we can obtain
the important features of phase space by launching traje
ries along this line only, varying, as we do here,qJ , while
qK is adapted to match the desired energy. These initial c
ditions will be used in the next section. What is more, tho
periodic orbits that result from the breakup of the field-fr
tori, being symmetric with respect to the time reversal sy
metry, are located onJy5Ky50 with (d/dt)Ky.0 or
(d/dt)Ky,0.

At least for small fields, it is useful to plot PSOS’s for th
exact ~i.e., three dimensional! motion using the variables
above. For higher fields, the coupling to the third degree
freedom becomes more important and the torus structur
this projection on two degrees freedom becomes more
more fuzzy.

B. Four basic periodic orbits

The PSOS plots in Fig. 2 show that the structure of ph
space generated from the normalized Hamiltonian~6! is
dominated by four fixed points on the linepJ5pK50, cor-
responding to four one-loop~in JK space! periodic orbits,
which we callPs , Pu , X1, andX2.

The orbitsPs and Pu ~displayed in Fig. 3! exist for all
field strengths and energies examined. ForPs , we have
along the orbit

~Jx ,Jy ,Jz!5~2Kx ,2Ky ,Kz!, ~26!

which is equivalent toLx50,Ly50,Az50. This corre-
sponds to the motion in thexy planez5pz50, andPs is
totally symmetric with respect to parity. These conditio
allow one to solve for the trajectory’s orbit analytically. F
Pu we have

~Jx ,Jy ,Jz!u t5~2Kx ,2Ky ,Kz!u t1T/2 , ~27!

whereT is the orbit’s period.
For intermediate energies and small electric fields@as in

Fig. 2~b!#, Pu becomes unstable and bifurcates into the t
stable orbitsX1 andX2, which are related by the parity sym
metry. Significantly, chaos spreads from this region of ins
bility.
-

i-

-

to-

n-
e

-

f
in
nd

e

o

-

Ps is very stable here; it may become unstable only
electric fields that are strong compared with the magn
field ~see also Sec. IVE!, in the process generating tw
stable periodic orbits, which we also callX1 andX2.

An analysis in terms of the adiabatic invariantsL̃z and
V @Eqs.~16! and ~17!# shows thatPu becomes unstable fo
@14#

g,21⇔a,0.644⇔Fn,0.215B, ~28!

i.e., for high magnetic fields~relative to the electric field!,
while Ps becomes unstable for

g.1⇔a,1.857⇔Fn,0.619B, ~29!

i.e., for high electric fields.
The position and stability of more complicated period

orbits in the normalized motion are shown in the figures
Sec. IV.

C. Periodic orbits of the exact motion

The normalized Hamiltonian facilitates the search for p
riodic orbits of the exact motion where the periodicity
J(t) andK (t) is a necessary condition for periodicity of a
orbit of the exact motion. In addition, the Kepler motio
along ellipses, given byfn , has to be taken into accoun
which can often be achieved by adjusting the initial angle
fn . The smaller the fields, the more loops are introduced
the inclusion offn because theJK motion becomes slowe
with respect to the fast motion.

Thus, finding periodic orbits in the exact motion from
periodic orbit in the normalized motion is a two-step proce
After finding the periodicJK motion, it is often possible to
make the orbit close on itself~i.e., fn has to go through
multiples of 2p) by merely varying the starting angl
fn(0). In view of the complicated structure of the motion
a six-dimensional phase space, this is a remarkable simp
cation.

When the motion contained in the robust fixed po
(Ps) is translated to Cartesian coordinates in this way
turns out to be the one planar periodic orbit~denoted by
C1 by Raithelet al. @4#! that dominates most of their photo
absorption spectra~see Fig. 4!. In our description, the promi-
nence of this orbit is clearly connected to the stability of t
motion, and its special status is evident at once, proving
both the action-angle variables we use, as well as the
proximate Hamiltonian, are the most appropriate for t
problem.
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D. Phase difference

Figure 3 shows thatPs andPu are rotating in the same
direction. They differ mainly by their phase difference b
tween theJ and theK rotor ~projected onto thexy plane!,
which isp for Ps and 0 forPu . This can also be seen from
Eqs.~26! and ~27!.

To see what this means for the structure of phase sp
we have computed an average phase difference for arbi
trajectories. For a point on a trajectory, the phase differe
may be defined as the angledJK5dJ2dK , where
tandJ5dJx /dJy is the direction of the trajectory in th
JxJy plane, anddK is defined correspondingly. Computin
the average value of the angledJK requires computing the
average values of its sine and cosine.

In Fig. 5 we have plotted the average value ofdJK along
trajectories started on the linepJ5pK50. One can see tha
phase space is dynamically separated into two reg
aroundPs andPu with an average phase difference of 0 a
p, respectively. This behavior is not restricted to the spe
initial conditions pJ5pK50. In parameter regimes with
widespread chaos, the trajectory may jump between the
domains.

It should be noted that the average phase difference
comes interesting only by the coupling of the rotors throu
the second-order terms in Hamiltonian~6!. In the first-order
motion, the phase difference is merely a constant, and
acquire any value.

FIG. 4. Periodic orbitsPs in the exact motion.~a! The motion is
bound to thexy plane.~b! shows a comparison of the exact~solid!
J motion ~in terms of qJ and pJ) with the normalized motion
~dashed!.
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IV. STABILITY ANALYSIS

A. Intramanifold chaos

Another interesting view onto phase space is given b
stability analysis, specifically in terms of Lyapunov stabilit
Figure 2 reveals that for intermediate energies, the orbitPu
becomes unstable. Chaos spreads from this region of in
bility and becomes strongest for energies around2 1

2,
whereas the motion in ann manifold is regular for low and
high energies. Becausen is fixed ~or approximately con-
served in the exact motion!, the chaotic motion describe
here may be termed intramanifold chaos@17#. This is to be
compared with the case of a pure magnetic field~the qua-
dratic Zeeman effect@3,18#!, where, due to the conservatio
of Lz , ann manifold does not have enough degrees of fr
dom for chaos. The latter problem shows significant ch
only when differentn manifolds mix.

The transition from order to chaos and back can be sho
in a more compact way: we restrict ourselves to trajecto
starting on the linepJ5pK50 ~see Sec. III A! and plot the
maximum Lyapunov exponent as a function ofE and qJ
~Fig. 6!. The maximum Lyapunov exponent has been co
puted by following the separation of nearby trajectories o
a finite time interval. Thus, for regular orbits the Lyapun
exponent is positive but small~this value depends mainly o
B andF, and on the time interval chosen!, but it is clearly
separated from the Lyapunov exponents of trajectories
chaotic regions.

In addition, in Fig. 6 we show the positions of period
orbits with up to four loops in the rotor coordinates. Th
periodic orbitsPs and Pu can be seen to extend from th
minimum to the maximum energy. For intermediate en
gies,Pu bifurcates and becomes unstable~Fig. 6!, generating
the X1 ,X2 orbits. More complicated orbits bifurcate from
this pair of orbits. They get squeezed together aroundPu ,
thus creating chaos via overlapping resonances.

A Lyapunov analysis of the exact motion@Fig. 6~b!#
shows the same regions of instability. The chaos we see
is related to the evolution ofJ andK . For the fields consid-
ered here it shows little dependence on the third degre
freedom (fn), which is neglected here and in what follow

FIG. 5. Average phase differencêdJK& along the line
pJ5pK50 as a function ofqJ for the exact~solid! and the normal-
ized ~dashed! motion; the external parameters are the same a
Fig. 2~c!.
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6546 55JAN von MILCZEWSKI AND T. UZER
B. Variation with the fields

Investigating different values ofF, one finds that the bi-
furcation ofPu into X1 andX2 fails to take place for highe
F values@see also Eq.~28!#. As a consequence, there is n
chaos visible for theseF values.

This behavior can be investigated through a plot simila
Fig. 6, fixing the energy atE52 1

2 and varyingF @Fig. 7~a!#.
For low but finiteF, Pu is unstable and a considerable fra
tion of phase space is chaotic. We find that even a ra
small electric field enhances chaos considerably with res
to the quadratic Zeeman effect~in the absence ofF). At
F'0.11, the orbitsX1 and X2 vanish, andPu becomes
stable, making the overall motion much more regular.

At yet higherF ~or lowerB with respect toF), Ps bifur-
cates in an analogous way, giving rise to strong chaos
rounding it. Thus the stability of the overall motion is ve
much dictated by the stability of the two orbitsPs andPu .
Note, however, that the chaotic region generated by the
stability of Ps in Fig. 7~a! is beyond the ionization threshol
now. Up toF'0.9, the agreement with the exact motion
very good.

FIG. 6. Stability analysis as a function of the energy
B50.5, F50.05 along the symmetry linepJ5pK50: comparison
of the normalized~a! J motion with the ~b! exact motion. The
shading is chosen according to the value of the maximum Lyapu
exponent, dark regions denoting chaotic motion. The smaller pa
on the right-hand side show the average Lyapunov exponent a
horizontal lines; numerical Lyapunov exponents below a sm
threshold are neglected. In addition, in~a!, we indicate the positions
of periodic orbits with up to four loops in the normalized motio
distinguishing between stable~black! and unstable~white! motion.
o

er
ct
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The correlation of short unstable periodic orbits with t
location of chaotic regions becomes evident again if we
vestigate how the stability depends on the magnetic fi
~Fig. 8!. We chose to display this for theintermediateenergy
E52 1

2, which appears to show most widespread chaos. O
recognizes again that even for larger fields, the approxim
treatment reproduces well the location of chaotic regio
Visible changes in the structure of chaotic regions app
only aroundB50.9. On the average, the extent of chao
regions grows withB.

C. Lines of stability

Further windows on the dynamics are opened by exam
ing the percentage of chaotic trajectories as a function
electric and magnetic fields. To this end, we computed
large number of trajectories throughout the surface of sec
for each value ofB andF. As a measure of chaos, we use t
average value of the maximum Lyapunov exponent~the
Kolmogorov-Sinai entropy@19#!. One can show that for this
problem to first order in the fields, equal areas on the S
represent equal volumes in phase space.

The most striking feature seen in Fig. 9 is a ‘‘ridge
stability’’ at F/B'4/7, which penetrates a large chaotic are
On this line, the PSOS becomes very regular@e.g., Fig.
10~g!#. Note that chaos is strongest just below this line, wh

t

v
ls
ng
ll

FIG. 7. Stability analysis of~a! the normalized and~b! the exact
motion as in Fig. 6, now as a function of the electric fieldF at
E52

1
2, B50.5. Here, only periodic orbits with up to three loop

are marked. Note the different scales in~a! and ~b!: in the exact
motion strong ionization sets in for electric fields aboveF'0.15
and the maximum value ofF in this panel is atF50.2, which is
marked by a line in~a!.
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55 6547CHAOS AND ORDER IN CROSSED FIELDS
for F→0 andB→0 the normalized motion becomes regula
as expected.

At F/B'1/5, another line of stability can be detected, b
it is much weaker than the first one. These remarkable a
nations between order and chaos are pictured by a serie
PSOS plots in Fig. 10 where only the electric field
changed. The two lines of stability occur close to the fie
values where the second order quantum perturbation exp
sion becomes separable@20#.

FIG. 8. Stability analysis of~a! the normalized and~b! the exact
motion as in Fig. 6, now as a function of the magnetic fieldB at
E52

1
2 ,F50.05. Here, only periodic orbits with up to three loop

are marked.
,

t
r-
of

s-

D. Numerical constants of the motion

The lines of stability may be made visible in yet anoth
way by starting from the fact that regular motion is asso
ated with the existence of approximate constants of the
tion. One can try numerically to find a constant of the moti
by assuming it to be in the form of a polynomialp in some
dynamical variables with free coefficients that are to be co
puted by a fitting procedure. Trajectories are started on a
throughout phase space and integrated for a number of
steps. The coefficients are determined so as to minimize
mean squared deviation ofp along each trajectory from the
average ofp for that trajectory. To exclude the trivial zer
solution, one point on each trajectory is chosen to be clos
a quantity characteristic for that trajectory like the average
a dynamical variable. The normalized mean deviations of
p from constancy averaged over all trajectories indicates
quality of the numerical constant of the motion.

In Fig. 11 we plots for a polynomialp in Jx , Jz , Kx ,
andKz as a function of the electric fieldF. The weak line of
stability is visible only for a polynomial of third order while
the strong line of stability shows itself in both cases. Bo
the second- and the third-order polynomial perform mos
better than the analytic adiabatic invariantV @Eq. ~17!#. Plot-
ting s as a function ofB andF for a third-order polynomial
reveals the existence of the lines of stability for very lo
fields as well.

The procedure described here does not appear to be
plicable to the exact~three degrees of freedom! motion.

E. Stability of the planar motion

As mentioned above, the orbitPs represents the motion in
the xy plane, and its stability becomes an indicator for t
stability of the exact motion with respect to thexy plane. To
demonstrate this, in Fig. 12, we have plotted the Lyapun
stability of Ps in the normalized motion and the maximu
distance to thexy plane for an arbitrary orbit of the exac
motion initially close to thexy plane: when the motion with
respect toxy plane becomes unstable, such an orbit w
repeatedly move away exponentially fast from thexy plane
and return to it symmetrically.
figure,

FIG. 9. Kolmogorov-Sinai entropy for~a! the normalized and~b! the exact motion as a function ofB andF, showing the two ridges of

stability ~marked by two lines!. In the exact motion the strong line of stability cannot be detected due to the onset of ionization. In this
dark regions denote regions with predominantly chaotic motion. In the dotted areas in~b!, only ionizing trajectories were found. In~b!, the
field values are restricted to the box drawn in~a!.
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FIG. 10. Surface of section
plots for the normalized motion
showing repeated transitions from
order to chaos and back atE
52

1
2, B50.6, andF50.001 ~a!,

0.01 ~b!, 0.06 ~c!, 0.12 ~d!, 0.15
~e!, 0.18~f!, 0.34~g!, 0.60~h!, and
1.00 ~i!.
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Both panels show that the motion with respect to thexy
plane becomes unstable approximately forF.0.62B when
Ps becomes unstable due to the bifurcation intoX1 andX2.
There is another region of instability aroundB50.55, which
occurs after a two-loop periodic orbit has bifurcated fro
Ps . A third region of instability in the exact motion, at ye
higherB, is not reproduced by the normalized Hamiltonia

V. QUANTUM MECHANICS

A. Diagonalization of the approximate Hamiltonian

In this section, we will discuss some of the quantum m
chanical properties of Hamiltonian~6! that can be quantized
by replacingJ andK by their corresponding angular mome
tum operators. Hamiltonian~6! is diagonalized in eachn
manifold (n51,2, . . . ) in a basis consisting of products o
eigenstates of the angular momentaJ andK :

umJmKn&5u jmJ&ukmK&, ~30!

where j5k5(n21)/2 and mJ ,mK52(n21)/2,
2(n21)/211, . . . ,(n21)/2. The parity symmetry may b
used by selecting the linear combinations

umJmK ,6&5~ umJmK&6umKmJ&)/A2, ~31!

mJ>mK (mJ.mK for ‘‘ 2 ’’ !, which have the parity
6(21)(mJ1mK).

As the basis is finite for fixedn ~of dimensionn2) and all
the integrals may be evaluated algebraically, the exact
ergy levels may easily be computed~with very small numeri-
cal errors!. For givenn, the Hamilton matrix is banded with
.

-

n-

bandwidth 2n11 provided the basis is ordered approp
ately; thus it is possible to go up to very high values ofn.

To compare these approximate eigenstates with the ei
states of the exact motion, we have computed some l
lying energy levels of Hamiltonian~1! by diagonalizing the
Hamilton matrix in a basis of Sturmian functions@21#. We
found the energy levels to be correct to at least second o
in the fields, i.e., the error scales likee3 ~for some levels like
e4) whenB5eb andF5e f , whereb and f are fixed.

The latter is true only after adding two constant term
~known from the single field theories! to the normalized
Hamiltonian~6!, namely,B2n2/16 @22# and 19F2n4/16 @23#.
In the semiclassical limit of highn, these terms are sma
with respect to the remaining second-order terms.

FIG. 11. Quality of the fit of a numerical approximate consta
of the motion as a function ofF at E52

1
2 andB50.6. The curve

marked by squares has been generated by a fit of a third-o
polynomial, the solid curve is for a second-order polynomial. W
also show the quality of the adiabatic invariantV @Eq. ~17!#
~crosses!.
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55 6549CHAOS AND ORDER IN CROSSED FIELDS
B. Quantal manifestations of chaos

Investigations of eigenvalues statistics are a comm
means to find the signatures of classical mechanics in
corresponding quantum mechanical system. An exampl
given by the distribution of nearest-neighbor level spacin
Spectra for regular system in general follow the Poisson
tribution @24#, which shows its maximum at zero spacin
between eigenenergies, while in the spectra of chaotic
tems that are described by Wigner statistics@25# the prob-
ability for zero spacing vanishes.

For systems with a mixed phase space, a useful inte
lation between these two extremes is given by the Bro
distribution @26#

Pb~x!5axbe2bxb11
, 0<b<1, ~32!

wherea andb are normalizing factors@26#. For b50, the
Poisson distribution is recovered, whileb51 corresponds to
the Wigner distribution.

Plotting, as a function of the fields, the parameterb that
best fits this distribution to the level statistics of the norm

FIG. 12. Stability of the planar motion as a function ofB and
F at E52

1
2. ~a! shows the maximum Lyapunov exponent for t

Ps orbit of the normalized motion. Field values at whichPs is
stable are plain white. Otherwise a bright shading denotes a l
Lyapunov exponent. In~b!, for the same fields values, the gra
shading codes the logarithm of the maximum distance from
xy plane for a trajectory that is launched a very small distance fr
that plane. Here, dark regions mean instability of the motion w
respect to thexy plane, while ionizing trajectories are white. No
that these methods are not sensitive to the stability of the mo
within the xy plane.
n
e
is
s.
s-

s-

o-
y

-

izing Hamiltonian ~6! reveals the influence of the lines o
stability on the quantum spectra~Fig. 13!. However, this is
successful only for very strong magnetic fields, so tha
comparison to the energy levels of the exact Hamiltonian
not possible.

C. Coherent state analysis

One way to compare eigenstates of Hamiltonian~6! with
the classical dynamics is to plot their coefficients in t
JzKz basis and to overlay the projection ontoJzKz space of
the corresponding trajectory, which we have done in Fig.
This corresponds to comparing a trajectory in Cartes
space with the configuration space representation of a w
function.

A more appropriate way of comparing classical and qu
tum mechanics is to compute phase space projections o
wave function, e.g., the Husimi function of a wave functio
in configuration space, which is the projection of the wa
function on minimum uncertainty Gaussian wave pack
@27#. In the present case, we have to use the coherent s
of the group SU~2!^SU~2!.

SU~2! coherent statesuuJfJ& and uuKfK& for the angular
momentaJ andK are obtained@28# by rotating the minimum
uncertainty stateu j2 j & through the anglesuJ andfJ where

Jx5
n

2
sinuJcosfJ ,

Jy5
n

2
sinuJsinfJ , ~33!

Jz5
n

2
cosuJ ,

and one obtains@29#

ge

e

h

n

FIG. 13. Plotted as a function ofFn4 ~at Bn351,n550, odd
parity! is the parameterb that best fits a Brody distribution to th
nearest-neighbor energy level statistics of the normalized Ha
tonian ~6!. Note the minima ofb at Fn450.2 andFn450.55, im-
plying a mostly Poissonian distribution, i.e., ‘‘regular’’ quantu
spectra, located on the two lines of classical stability.
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FIG. 14. Quantum mechanical eigenstates of the normalized Hamiltonian that follow the classical periodic orbitsPs ~left! andPu ~right!,
with n530, B50.45,F50.045.~a! and ~b! show projections ontoJzKz space. Due to the time reversal symmetry, these periodic o
retrace themselves after a half period. ForPs , we haveJz5Kz . ~c! and~d! show quantum surfaces of section~upper half!. The correspond-
ing PSOS is shown in the lower half. Note that the wave function in~d! extends along the separatrix, the unstable fixed point of whic
Pu , avoiding regions of stable motion, and this wave function may be dubbed a quantum state in the intramanifold chaos. In con
wave function in~b! extends over invariant tori in the vicinity ofPs only.
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uuJfJ&5 (
m52 j

j S 2 j

j1mD 1/2
3sinj1m~uJ/2!cosj2m~uJ/2!e2 i ~ j1m!fJu jm&, ~34!

and similarly forK . JK coherent states, coherent states
the group SU~2!^SU~2!, at given ‘‘classical coordinates’’J
andK , may then be formed as products of individual coh
ent states:

uuJfJ ,uKfK&5uuJfJ&uuKfK&. ~35!

Coherent states may now be used, e.g., to find the ove
of a wave function with a classical orbit. More important
choosing the coherent states along the Poincare´ surface of
section, one obtains the so-called quantum surface of sec
~QSOS!. Figure 14 displays QSOS’s for wave functions th
strongly overlap with the two basic periodic orbitsPs and
Pu . The figure shows how the quantum states follow
underlying classical structures, i.e., the wave function t
corresponds toPu extends over the entire~intramanifold!
chaotic region formed aroundPu @Fig. 14~d!#, while in Fig.
14~c!, the wave function is restricted to the invariant tori
the vicinity of Ps .

VI. CONCLUSIONS

We have shown that the exact Hamiltonian of a Rydb
electron in crossed electric and magnetic fields can be
fully approximated by combining the normal form theor
the classical perturbation theory, and Lie algebra. Despite
enormous size of the parameter and phase space of the
f

-

ap

on
t

e
t

g
e-

he
igi-

nal Hamiltonian, the normalized Hamiltonian gives a cle
view of the nonlinear dynamics, the structure of phase sp
its periodic motions, and chaos-order alternations. It
scribes that part of the dynamics that appears to determ
the ‘‘physics’’ of the motion, namely, the evolution of Ke
pler ellipses under the influence of the external fields. T
special status assigned to certain dominant periodic orbit
experimental photoabsorption spectra emerges natu
from our treatment.

By comparing our results with those of exact dynami
we see that the normalized Hamiltonian represents a v
valuable guide to the properties of the exact motion, mak
accurate predictions for low fields, classically as well
quantum mechanically.

In particular, the normalized Hamiltonian shows how
electric field induces the onset of chaotic motion: even sm
values ofF cause chaos when a magnetic field alone is
sufficient to obtain visible chaos. This intramanifold chaos
linked to the stability of a simple periodic orbit (Pu). Chaos
emerges from the middle of ann manifold and vanishes
again whenPu becomes stable. In addition, this Hamiltonia
can predict the location of regions of regular and chao
motion; surprisingly, the induced structure remains valid
high fields.
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